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Abstract 

Images are :wo dimensional projections of 
three dimensional scenes, therefore depth recovery 
is a crucial problem in Image Understanding, with 
applications in passive navigation, cartography, 
surveillance, and industrial robotics. Stereo 
analysis provides a more direct quantitative depth 
evaluation than techniques such as shape from shad- 
ing, and its being passive makes it more applicable 
than active range finding imagery by laser or 
radar. This paper addresses the subproblem of 
identifying corresponding points in the two images. 
The primitives we are using are groups of collinear 
connected edge points called segments, and we base 
the correspondence on the minimum "differential 
disparity" criterion. The result of this process- 
ing is a sparse array disparity map of the analyzed 
scene. 

I. Introduction 

The human visual system perceives depth with 
no apparent effort and very few mistakes, but how 
it does so is not understood. Binocular stereopsis 
plays a key role in this process, and the 
straightforward extraction of depth it provides, 

once corresponding points are identified, makes it 
very attractive. Depth recovery is necessary in 
domains such as passive navigation[Gennery80, 
MoravecBO], cartography[Kelly77, Panton78], 
surveillance[Henderson79] and industrial robotics. 
Proposed solutions for the stereo problem follow a 
paradigm involving the following steps[Barnard821: 

-image acquisition, 
-camera modeling, 
-feature acquisition, 
-image matching, 
-depth determination, 
-interpolation. 

The hardest step is image matching, that is iden- 
tifying corresponding points in two images, and 
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this paper is solely devotee to it. The next sec- 
tion reviews the existing systems that have been 
proposed so far, divided in two broad classes, 
area-based and edge-based, then we summarize our 
assumptions and give a formal description of the 
method. The fourth section presents results, and we 
then discuss extensions. 

II. Review of existing methods 

Two classes of techniques have been used for 
stereo matching, area-based and feature-based. 

2.1. Area-based stereo 

Ideally, one would like to find a correspond- 
ing pixel for each pixel in each image of a stereo 
pair, but the semantic information conveyed by a 

single pixel is too low to resolve ambiguous 
matches, therefore we have to consider an area or 
neighborhood around each pixel, and use 
correlation-based matching algorithms to determine 
the corresponding match, it is therefore using 
local context to resolve ambiguities. The jus- 
tification for such an approach is that of 

"continuity", that is disparity values change 
smoothly, except at a few depth discontinuities. 
All systems based on area-correlation suffer from 
the same limitations: 

- They require the presence of a detectable 
texture within each correlation window, 
therefore they tend to fail in feature- 
less or repetitive texture environments. 

- They tend to be confused by the presence 
of a surface discontinuity in a correla- 

tion window. 

- They are sensitive to absolute intensity, 
contrast and illumination. 

- They get confused in rapidly changing 
depth fields (vegetation.) 

For these reasons, the existing systems, specially 
the ones used in "automatic" cartography, require 
the intervention of human operators to guide them 
and correct them. Such systems are described in 
[LucasSl, Panton78, HannahSO, BarnardSO, 

Moravec79]. 
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2.2.   Feature-based   systems 

The depth information in stereo analysis is 
conveyed by the differences in the two images of a 
stereo pair due to the different viewpoints, the 
differences being most prominent at the discon- 
tinuities, or edges. Obviously, matching of fea- 
tures will not provide a full depth map, and must 
be followed by an interpolating scheme. The common 
characteristics of feature-based matching tech- 
niques  are: 

- They are faster than area-based methods, 
because there are many fewer points to 
consider . 

- The obtained match is more accurate, 
edges can even be located with sub-pixel 
precision|Binford811. 

- They are less sensitive to photometric 
variations, since they represent 
geometric   properties  of  a   scene. 

Henderson[HenderBon79l considered scenes represent- 
ing cultural sites (man-made structures) and 
matched edge points on epipolar lines in the two 
views. He reduced ambiguity by assuming continuity 
between consecutive epipolar lines. Marr and Pog- 
gio have relied on two apparently simple 
constraints[MarT79l: 

III.   The Minimal  Differential 
Disparity Algorithm 

From the survey conducted above, it appears 
that feature-based techniques are more appropriate 
to solve the correspondence problem, but edges as a 
primitive seem to be too low-level, and a connec- 
tivity check is needed to remove spurious matches. 
High level primitives such as physic-l object boun- 
daries or surface descriptions would be preferred, 
however, stereo processing may need to precede ^ne 
computation     of     such     descriptions. As     a     step 
towards higher level primitives, we are using 
segments. In order to generate them, we fit 
straight lines through adjacent edge points with a 
given tolerance of one pixel. These segments can 
be  described  by : 

- coordinates   of  the  end   points 
- orientation 
- strength   (average  contrast) 

By using these primitives, we implicitly assume the 
connectivity constraint. When matching segments, 
we need to allow one segment to possibly match with 
more than one segment in the other image (i.e. to 
allow for fragmented segments), even if we wish to 
preserve unique matches for the individual edge 
points. Also, instead of considering one epipolar 
Hie at a time, we have to consider all epipolar 
lines  in which  a  given  segment   appears. 

1. Uniqueness . 
Each point in an image may be assigned 
at most one disparity value. One may 
note that this assumption is not correct 
for   transparent  objects. 

2. Continuity. 
Matter is cohesive, therefore values 
change smoothly, except at a few depth 
discontinuities. 

They first proposed a cooperative algorithm[Marr761 
that works very well on random-dot stereograms, but 
they rejected it to propose one of more heuristic 
nature, implemented by GrimsonlGrimson79, 
GrimsonSl] that generates good results, given the 
very few assumptions. Arnold[Arnold78] matches 
edges using local context, and his system seems to 
perform well on cultural scenes. Finally, Baker 
and Binford[Baker82l match edged on epipolar lines 
by using the no-reversal constraint that the order 
of the match has to be preserved, in addition to 
uniqueness and continuity. They also consider con- 
tinuity by examining adjacent epipolar lines. This 
system appears to perform reasonably on a wide 
variety  of   images. 

In most of the systems presented above, a con- 
siderable saving in search time is obtained by a 
coarse to fine matching, that is the matching is 
originally done on a low-resolution version of the 
image and the results are propagated to the higher 
resolution version. However, it should be noted 
that in current implementations, good matches as 
well as errors tend to propagate from one level to 
the next. 

3,1,   Assumptions   and  Definitions 

We consider a simple camera geometry in which 
the epipolar plane, defined as the plane passing 
through ar,-object point and the two camera foci, 
intersects the two image planes, so defining 
epipolar lines parallel to the y axis. Therefore, 
corresponding points must lie on corresponding 
epipolai lines, that is have the same row value, 
this  is   illustrated   in  Figure   3-1. 

camera 
baseline 

projection of 
scene point 

in  image corresponding 
planes epipolar  lines 

Figure  3-1:       Collinear  Epipolar Geometry 
from  [Baker82l 
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We also sive a bound on the disparity range allow- 
able for any given segn.ent, let us call It raaxd. 
Let A=fa-} be the set of segments in the left image 
Let B={b1. } be the set of segments in the right 

At   Iteration  1 

image. 
Then, for each segment a^resp. b-) in the Lett 
(resp. right) image, we can define a window 
wUMresp. w(j)) in which corresponding segments 

the    right    (resp.    left)    image    must    lie.     -- 
shape of this window is a parallelogram, one median 
being a-(resp. b,), the other a horizontal vector 
of length 2*maxd.-1 One can see that ai in w(j) im- 

plies  b;   in  w(i) . ,      . ,        ,      ■ 
We   define   the   boolean   function   p(i,l)   relating   two 

segments  as; 

_ p( i , j)   is   true   if 
- b •   overlaps  w(i) 
-a-    ,  b-   have   "similar"  contrast 
- a1   .  b!  have  "similar"  orientation b-  have 

The required similarity in orientation is loose and 
is a function of the segment length. We have set 
it to be 25 degrees for long segments and up to 90 
degrees   for  very   short   segmems. 
Two segments are defined to have similar contrast 
if the absolute value of the difference of the in- 
dividual   contrasts    is   less   than   202   of   the   larger 

To  each  pair   (i,j)   such  that   p(i,i)   is   true  we  as- 
sociate     an     average     disparity    d-     which    is    the 
average   of   the   disparity   between   lihe    two   segments 
a-   and  b-   along   the   length  of  their  overlap. 
We  define   the   two   functions  SI   and   S2  as: 

v'dj) ■(   E mln      ld>,w-
d 

iil)/ard(V 

WVW    hShi 

4 \^ Bin       '.t^-i.Alfari'-a.'l 
I    ^      vvv hk 1J^    ' h    1     k 
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At   the end of  each  Iteration,   we define  the  cets 
Q(a   )   and Q(b  )  as 

j   in Q(a  )  and  i   in Q(b  )   if 

Vk in SKaJ, v'd.j^v (l,k) 

Vh  in SKb.),  v'( i, J)iv,"(h, J ) 

For any  iteration after  the  first  one,   the  computation 

of v   (i,j)   becomes 

a.cSAh.)V: 
h     1     j 

•(   2 

mm     ld..-d     l|/card(b  ) 

^SjCb^US^bj) b^bj 
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if   the  sets Q are not   empty,   otherwise  the  computation 
of   the  function v   is done using  the  formula  for   iteration   1. 

SlUjH j|b:   in  w(i) 
and   p(i,j)   is   true} 

S2(a;)={j|b.   in  w(i) 
and   p(i,i)   is   false} 

Similarly, we define Sl(b,) and 82(bj). We will 
also need the value cardU;), which is the number 
of elements in the set SKa^ S2(ai). 
It is to be noted that all the functions described 
above ,ir« static, meaning that they are computed 
only once. 

3.2.   Description 

Each   possible   match   is   evaluated   by  computing 
a measur»  of  the  distortion this match   provokes   for 
its   neighbors,i.e.    given   that    (i,.i)    is   a   correct 
match   with   its   associated   disparity   d^,   how  well 
do    the    neighbors    agree    with    this    proposed    dis- 
parity?        We    compute    an    evaluation    of    the   match 
(i  j)   and   compare   to   the   matches   (i.k)   and   (h.j) 
for  k  in  SKa.)   and  h  in  Sl(b-).     If   the  evaluation 
is  minimum   for   (i,j),   then  jJ is   the   preferred   in- 
terpretation   for   i   and   i   is   the   preferred   inter- 
pretation  for  j.   For any  iteration after  the first 
one,   in order  to evaluate a match  (i,j),  we only 
look at  the preferred matches for  the neighbors of 
i and j,   if  they have any.     Formally,   the compu- 
tation of v  (i,j)   is: 

At th<! last iteration, only those elements 
that have a preferred match are considered valid, 
and a disparity map array is filled using these 
values. It is interesting to note that this process 
is absolutely symmetric in the two views and there- 
fore will yield identical results (except for the 
sign of the disparity) if the two views are inter- 
changed. It is helpful to look at a simple example 
to  understand   this   process. 

j, 3.   Example 

Let our 2 views be the ones shown in Figure 

3-2 below: 

1    1 

1   2    3 

1    1 

1    2    3 

Figure  3-2:       A simple example 
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In absence of any pxtra information, the correct 
interpretation is that the 3 points have the same 
disparity, and the result of the matching is 
(a^b^   for   i   in { 1,2,3} . 
In this example, Sl{»i )"81(bj )"{l,2f 3} and 
S2(ai)=S2(b. )=  0.     Ihe array d-   is 

0 1 2 
-1 0 1 
-2   -1     0 

Therefore  we   find 

v   (1,1)=   (|d22-d11l+|d33-d11|)/3 

+  {|d22-d11|+jd33-d11|)/3 

compared   to 

vhl.Z)-   (|d23-d12l + |d33-d1J)/3 
4 (Ki21-d12l + !d23-d12i)/3 

and   to 
1, 

v   (1,3)-   (ld22-
d
1J + M32-d13|)/3 

+ (!d1;-dn[+id11-d13i)/3 

=  2.67 

left view is shown on the right and the right view 
on the left. All results will also be shown this 
way, without explicitly marking each point and its 
correspondence. We first started our experiments 
with very simple line drawings, slightly more com- 
plex than the one shown in Figure 3-2 and the 
results    matched     the    expectations. In    order    to 
remove the effects of the segmentation procedure on 
the performance of our matching technique, we hand- 
segmented the images shown in Figure 4-1 by tracing 
the boundaries of the objects on a digitizing 
table. This image, from Control Data Corporation, 
is synthetic and has been used by Baker [ Baker82 j 
for his experiments. The resulting segments are 
shown on Figure 4-2 and Figure 4-3 displays the 
results after matching. All the lines that have 
been matched have the correct correspondence, but 
some matches are missed. This is due to the fact 
that when the matcher gets confused by closely com- 
peting assignments, it chooses not to assign a 
label. Also, some edges are not matches because of 
mistakes in the tracing procedure: we traced the 
boundaries of some objects in opposite directions 
in  the two views. 
For all other examples, f ,e detection was per- 
formed automatically usim t technique developed by 
Nevatia and BabulNevatiaSO] that finds edge mag- 
nitude and direction by convolving the image with 
edge masks in different orientations (we used 5x5 
masks in 6 directions here). These edges are then 
linked to form boundary curves which are ap- 
proximated by  piecewise   linear   segments. 

The calculations are similar for the other pairs, 
so, at the end of th? first iteration, the 
preferred interpretations are only the correct 
ones, and further iterations will not alter the 
results. 

3.4.   Discussion 

The criterion used here, namely the minimal 
differential disparity, has similarities with the 
edge interval constraints given in [ArnoldSO] and 
subsequently used by Baker[Baker 82], but looser in 
the sense that it does not require ordering of the 
edges. Since our criterion does not take ordering 
into account, a dynamic programming implementation 
is not possible. Our evaluation function is more 
informed than Baker's, in the sense that it con- 
siders all edges in a neighborhood instead of just 
the predecessor and successor of a given edge. The 
performance of this algorithm on a few examples is 
presented  next . 

IV.   Results 

It is difficult to display results of stereo 
matching meaningfully, especially in a two dimen- 
sional picture, since we only generate a sparse 
disparity map. We will simply show the line seg- 
ments in the two views that are found to match. We 
have not been able to master the art of cro s-eyed 
stereo usion, but since a number of people in the 
field are good at it, we will present all pairs of 
images    according    to    its    convention,    that    is    the 

Next, consider the industrial part shown in 
Figure 4-4, the original resolution is 256 by 256 
and the gray levels are coded on 8 bits. We ap- 
plied the matching algorithm to two different 
resolutions of the image, running it through three 
iterations. It was found that no assignment was 
changed after three iterations in our experiments. 
Figure 4-5 shows the original edges and Figure 
4-6 displays the results in the above mentioned 
form. Similarly, Figure 4-7 shows the segments at 
half resolution and Figure 4-8 the results. Look- 
ing at the segments one by one, we did not notice 
any spurious assignment at either resolution, mean- 
ing that we captured the shape of the object, even 
though the density of edges is much larger than in 
the  previous  example. 

Another, more complex image is shown on Figure 
4-9. In this image, we have a wide range of dis- 
parities, a change of sign in the disparities 
across the picture, various occlusions, the 
presence of a repetitive structure (a Rubik's ci . = ^ 
and contrast reversal . We do not expect to get 
good results with this contrast reversal since one 
of our preliminary conditions is similarity in con- 
trast, but the other peculiarities are very inter- 
esting. We worked at low resolution on the seg- 
ments shown in Figure 4-10 to obtain the resulLu 

shown in Figure 4-11. The interesting points are 
the   following: 

The elongated vertical blocks in the rear 
of the image are correctly put into cor- 
respondence . 
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- AU the squares of the cube that should 
be identified are correctly matched. The 
correct labeling appeared at iteration 2 
(at iteration 1, most of them are only 
ambiguously matched.) 

The segments at high resolution are shown in Figure 
4-12 and the matching results in Figure 4-13. We 
did not use the results at low resolution to guide 
the matching at high resolution, therefore the 
elongated block in the rear right is not matched 
any longer. It is interesting to note that the 
edges coming from the texture of the wood blocks do 
not  create  confusion,  but  help the matching,  on  the 
front   cylinder    for   example.      Once   again,   most   as 
signed  matches   are  correct. 

V.  Conclusions 

This research is far from being in a final 
state. The initial encouraging results presented 
here must therefore only be viewed as an indication 
that the hypothesis of minimal c'i f ferential dis- 
parity may be useful. The critical points that 
must  be  examined   are: 

- Relax the contrast constraint. This may 
be done by considering not tne contrast 
of r.n edge, but the intensity values on 
each side. Edges could then be matched 
if either their left side or their right 
aid» correspond. One tray eventually con- 
sider an edge as a doublet(Baker821 and 
matcii  each   side  separately. 

- To refine the formulation of the evalua- 
tion formula. Statistical analysis may 
yield bef-er functions, maybe by intro- 
ducing a static probability measure to 
evaluate each match based on similarity 
of intrinsic properties (length, color, 
orientation.) Also of concern is a more 
accurate definition of a no-match label, 
which is obtained if a match pair is not 
clearly better  than the competing ones. 

- Further extensive testing is also re- 
quired on aerial and near range imagery, 
with terrain models for accuracy check- 
ing. 

- Finally, we must use an interpolation 
scheme, very likely intensity-based, to 
generate d full disparity map of the 
scene depth. 
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Figure  4-1;       Synthetic   image   [256x256x6] 

Figure 4-2:       Hand  generated  segments 
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Figure 4-3:        Results  of   the  matching 
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Figure  4-4:        Industrial   part   [256x256x8 

Figure  4-5:       Segments   from  the   full   resolution   image 
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Figure 4-6:   Results at full resolutic 
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Figure  4-7:        Segments   from  the  half   resolution   image 

Figure  4-8;       Results  at   half  resolution 
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Figure  4-9:        Image   of   some  blocks!512x512x7] 
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Figure  -,-10:        Segments  at   low  resolution 
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Figure  4-11:        Results  at   low resolution 

-un 
. jpa lap 

r ^m 
Figure  4-12:        Segments   at   high   resolution 
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Figure  4-13:        Results  at  high   resolution 
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